Working With Type Parameters in Scala

Enhancing code flexibility and enabling generic programming for diverse data types.
def myGenericAdditionFun[T](x: T, y: T): Int = 
    // Casting for x
    val myMatchX = x match
        case x: Int => x
        case x: Double => x.toInt
        case x: String => x.toInt
        case x: Char => x.asDigit
        case x: Boolean => if (x) 1 else 0

    // Casting for x
    val myMatchY = y match
        case y: Int => y
        case y: Double => y.toInt
        case y: String => y.toInt
        case y: Char => y.asDigit
        case y: Boolean => if (y) 1 else 0

    // Return addition
    myMatchX + myMatchY

myGenericAdditionFun(1, 2) 			// res0: Int = 3
myGenericAdditionFun(1.1, 2.2) 		// res1: Int = 3
myGenericAdditionFun('1', '2') 		// res2: Int = 3
myGenericAdditionFun("1", "2") 		// res3: Int = 3
myGenericAdditionFun(true, false) 	// res4: Int = 1
myGenericAdditionFun(true, true) 	// res5: Int = 2
myGenericAdditionFun(false, false) 	// res6: Int = 0
myGenericAdditionFun(1, '2') 		// res7: Int = 3
myGenericAdditionFun("1", '2') 		// res8: Int = 3
myGenericAdditionFun(1.4, '2') 		// res9: Int = 3
Scala
Exploratory data analysis (EDA) is a scientific technique developed by the mathematician John Tukey in the 1970s widely used in…
In our previous article, What Is Julia, and Why It Matters?, we discussed why Julia is so relevant today and…
Markdown is a lightweight markup language used for creating formatted text. It was created in 2004 by John Gruber &…
A Big Data file format is designed to store high volumes of variable data optimally. This can be achieved…

Request Full Resume